فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

YOUSEFI AZITA | AMIRSHAHI BITA

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    3
  • شماره: 

    2
  • صفحات: 

    107-112
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    321
  • دانلود: 

    0
چکیده: 

In this paper we have tried to develop an altered version of the artificial bee colony algorithm which is inspired from and combined with the meta-heuristic algorithm of firefly. In this method, we have tried to change the main equation of searching within the original ABC algorithm. On this basis, a new combined equation was used for steps of employed bees and onlooker bees. For this purpose, we had to define several new parameters for improving the quality of the proposed method. In this regard, we have introduced two new parameters to the method. The new method has been simulated within the software of MATLAB and it has also been run according to objective functions of SPHERE, GRIEWANK and ACKLEY. All these functions are standard evaluation functions that are generally used for meta-heuristic algorithms. Results that were yielded by the proposed method were better than the results of the initial algorithm and especially by increasing the number of variables of the problem, this improvement becomes even more significant.We have successfully established a better balance between concepts of exploration and exploitation, especially with increasing the repetition cycles, we have successfully controlled the concept of utilization with random parameters. Tests have been ran more than 500 times.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 321

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

YOUSEFI AZITA | AMIRSHAHI BITA

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    1
  • شماره: 

    4
  • صفحات: 

    53-58
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    228
  • دانلود: 

    0
چکیده: 

In this paper we have tried to develop an altered version of the artificial bee colony algorithm which is inspired from and combined with the meta-heuristic algorithm of firefly. In this method, we have tried to change the main equation of searching within the original ABC algorithm. On this basis, a new combined equation was used for steps of employed bees and onlooker bees. For this purpose, we had to define several new parameters for improving the quality of the proposed method. In this regard, we have introduced two new parameters to the method. The new method has been simulated within the software of MATLAB and it has also been run according to objective functions of SPHERE, GRIEWANK and ACKLEY. All these functions are standard evaluation functions that are generally used for meta-heuristic algorithms. Results that were yielded by the proposed method were better than the results of the initial algorithm and especially by increasing the number of variables of the problem, this improvement becomes even more significant. We have successfully established a better balance between concepts of exploration and exploitation, especially with increasing the repetition cycles, we have successfully controlled the concept of utilization with random parameters. Tests have been ran more than 500 times.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 228

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 1
نویسندگان: 

KAVEH A. | ZOLGHADR A.

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    18
  • شماره: 

    5
  • صفحات: 

    673-701
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    960
  • دانلود: 

    0
چکیده: 

In this paper, a new nature-inspired population-based meta-heuristic algorithm is presented. The algorithm, called Cyclical Parthenogenesis algorithm (CPA), is inspired by reproduction and social behavior of some zoological species like aphids, which can reproduce with and without mating. The algorithm considers each candidate solution as a living organism and iteratively improves the quality of solutions utilizing reproduction and displacement mechanisms. Mathematical and engineering design problems are employed in order to investigate the viability of the proposed algorithm. The results indicate that the performance of the newly proposed algorithm is comparable to other state-of-the-art meta-heuristic algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 960

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    6
  • شماره: 

    3
  • صفحات: 

    304-329
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    265
  • دانلود: 

    92
چکیده: 

هدف: در سال های اخیر، شاهد ظهور و گسترش الگوریتم­های فرا ابتکاری و استفاده از آن­ها جهت حل مسائل پیچیده، غیرخطی و ابعاد بالا بوده ایم. با توجه به اینکه الگوریتم­های فوق برای حل مسائل پیچیده و در حال تغییر دنیای واقعی به کار می­روند، دنیای الگوریتم­ها و طراحی آن­ها به شکل فزاینده ای پویا و رو به رشد بوده است. بنابراین، پیوسته شاهد به وجود آمدن الگوریتم های جدیدی هستیم. هدف از این تحقیق، ارائه یک الگوریتم فرا ابتکاری جدید به نام «الگوریتم بهینه سازی نظامی» می­باشد. روش شناسی پژوهش: با الهام از عملیات­های نظامی الگوریتم پیشنهادی طراحی و ارائه گردید و پس از کدنویسی، توابع تست استاندارد و الگوریتم­های محک برای ارزیابی عملکرد آن تعیین و مشخص شدند. یافته ‎ها: عملکرد الگوریتم پیشنهادی به وسیله 23 تابع تست استاندارد و با در نظر گرفتن شاخص­های «میانگین جواب­ها»، «میانگین زمان محاسباتی» و «زمان همگرایی» در مقایسه با هشت الگوریتم محک شامل: ژنتیک، ازدحام ذرات، کلونی زنبور مصنوعی، قورباغه جهنده، رقابت استعماری، گرگ خاکستری، بهینه­سازی وال و بهینه­سازی ملخ مورد ارزیابی و سنجش قرار گرفت. نتایج نشان دهنده عملکرد مطلوب الگوریتم پیشنهادی است. اصالت/ارزش افزوده علمی: در این مقاله، با الهام از عملیات­های نظامی الگوریتم جدیدی به نام الگوریتم بهینه­سازی نظامی (MOA) ارائه می­شود که مبتنی بر جمعیت است و بر اساس «جستجوی تصادفی»، «تقسیم فضای جواب به چند منطقه و تخصیص بخشی از جمعیت به هر منطقه»، «جستجوی سواره نظام» و «جستجوی پیاده نظام» عمل می کند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 265

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 92 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2011
  • دوره: 

    4
  • شماره: 

    1 (7)
  • صفحات: 

    45-55
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    301
  • دانلود: 

    0
چکیده: 

Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a heterogeneous distributed computing system. To compare our algorithm with previous ones, an extensive computational study on some benchmark problems was conducted. The results obtained from the computational study indicate that the proposed algorithm is a viable and effective approach for the TAP.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 301

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    11
  • شماره: 

    42
  • صفحات: 

    149-162
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

Optimization problems are becoming more complicated, and their resource requirements are rising. Real-life optimization problems are often NP-hard and time or memory consuming. Nature has always been an excellent pattern for humans to pull out the best mechanisms and the best engineering to solve their problems. The concept of optimization seen in several natural processes, such as species evolution, swarm intelligence, social group behavior, the immune system, mating strategies, reproduction and foraging, and animals’ cooperative hunting behavior. This paper proposes a new meta-heuristic algorithm for solving NP-hard nonlinear optimization problems inspired by the intelligence, socially, and collaborative behavior of the Qashqai nomad’s migration who have adjusted for many years. In the design of this algorithm uses population-based features, experts’ opinions, and more to improve its performance in achieving the optimal global solution. The performance of this algorithm tested using the well-known optimization test functions and factory facility layout problems. It found that in many cases, the performance of the proposed algorithm was better than other known meta-heuristic algorithms in terms of convergence speed and quality of solutions. The name of this algorithm chooses in honor of the Qashqai nomads, the famous tribes of southwest Iran, the Qashqai algorithm

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Pira Einollah | Rouhi Alireza

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    2
  • صفحات: 

    535-556
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    5
  • دانلود: 

    0
چکیده: 

Background and Objectives: The development of effective meta-heuristic algorithms is crucial for solving complex optimization problems. This paper introduces the Society Deciling Process (SDP), a novel socio-inspired meta-heuristic algorithm that simulates the social categorization into deciles based on metrics such as income, occupation, and education. The objective of this research is to introduce the SDP algorithm and evaluate its performance in terms of convergence speed and hit rate, comparing it with seven well-established meta-heuristic algorithms to highlight its potential in optimization tasks.Methods: The SDP algorithm's efficacy was evaluated using a comprehensive set of 14 general test functions, including benchmarks from the CEC 2019 and CEC 2022 competitions. The performance of SDP was compared against seven established meta-heuristic algorithms: Artificial Hummingbird algorithm (AHA), Dwarf Mongoose Optimization algorithm (DMO), Reptile Search algorithm (RSA), Snake Optimizer (SO), Prairie Dog Optimization (PDO), Fick’s Law Optimization (FLA), and Gazelle Optimization algorithm (GOA). Statistical analysis was conducted using Friedman's rank and Wilcoxon signed-rank tests to assess the relative performance in terms of exploration, exploitation capabilities, and proximity to the optimum solution.Results: The results demonstrated that the SDP algorithm outperforms its counterparts in terms of convergence speed and hit rate across the selected test functions. In statistical tests, SDP showed significantly better performance in exploration and exploitation, leading to a higher proximity to the optimum solution compared to the other algorithms. Furthermore, when applied to five complex engineering design problems, the SDP algorithm exhibited superior performance, outmatching the state-of-the-art algorithms in terms of effectiveness and efficiency.Conclusion: The Society Deciling Process (SDP) algorithm introduces a novel and effective approach to optimization, inspired by societal structure dynamics. Its superior performance in convergence speed, exploration and exploitation capabilities, and application to complex engineering problems establishes SDP as a promising meta-heuristic algorithm. This research not only demonstrates the potential of socio-inspired algorithms in optimization tasks but also opens avenues for further enhancements in meta-heuristic algorithm designs.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Mahdipour Elham | GHASEMZADEH MOHAMMAD

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    51
  • شماره: 

    1 (95)
  • صفحات: 

    97-107
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    79
  • دانلود: 

    0
چکیده: 

Regarding optimization problems, there is a high demand for high-performance algorithms that can process the problem solution-space efficiently and find the best ones quite quickly. An approach to get this target is based on using swarm intelligence algorithms; these algorithms apply a population of simple agents to communicate locally with one another and with their surroundings. In this paper, we propose a novel approach based on combining the characteristics of the two algorithms: Cat Swarm Optimization (CSO) and the Shuffled Frog Leaping algorithm (SFLA). The experimental results show the convergence ratio of our hybrid SFLA-CSO algorithm is seven times higher than that of CSO and five times higher than the convergence ratio of the standard SFLA algorithm. The obtained results also revealed that the hybrid method speeds up the convergence significantly, and reduces the error rate. We compared the proposed hybrid algorithm against the famous relevant algorithms PSO, ACO, ABC, GA, and SA; the results are valuable and promising.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 79

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    6
  • شماره: 

    1
  • صفحات: 

    44-66
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

This work introduces an innovative heuristic algorithm named "Competition and Collaboration in Evading Threat (CCET)". Inspired by the escape behavior of animals such as deer, buffalo, sheep, etc., from predators like lions, leopards, tigers, etc., and also drawing parallels with soldiers evading attacks in war zones involving missiles, cannons, tanks, enemy gunfire, etc., the algorithm has been devised. In this approach, it is assumed that soldiers in war zones or domesticated animals are fleeing from threats and, despite competing in their escape, they collaborate with each other to ensure their survival. Unlike existing heuristic algorithms that rely on convergence, this proposed algorithm focuses on a novel approach based on the concept of divergence. The optimal response is determined based on the divergence of prey from the threat of the predator. The algorithm undergoes testing on 23 well-known benchmark functions, including unimodal, multimodal, and fixed-dimensional functions. The performance of the proposed algorithm is validated against recognized heuristic algorithms. Comparative results indicate that the proposed algorithm significantly demonstrates the capability to compete with well-known and powerful algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KAVEH A. | ZOLGHADR A.

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    6
  • شماره: 

    4
  • صفحات: 

    469-492
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    407
  • دانلود: 

    0
چکیده: 

This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other based on the quality of the solutions they represent. The competing teams move to their new positions according to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that considers the qualities of both of the interacting solutions. TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 407

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button